PFAS Remediation Strategies and Research

Paul B. Hatzinger, PhD Aptim Federal Services, Lawrenceville, NJ 9/27/2024

How Do We Treat Contaminants in Groundwater?

Powerpoint stock image

Ex Situ Pump-and-Treat In Situ Bioremediation

- **Bioreactors**
- **GAC/IX sorptive systems**
- **Oxidation systems**
- **Air-stripping**

PTIM

- **Add amendments to stimulate natural bacteria**
- **Add bioaugmentation cultures**

In Situ Chemical Oxidation (ISCO)

- \triangleright Persulfate
- Ozone
- \triangleright Peroxide
- \triangleright Permanganate

Graphic from Liang et al., 2014.

In Situ Chemical Reduction (ISCR)

- \triangleright Permeable Reactive Barrier (PRB) Zero-valent iron (ZVI)
- \triangleright Nano-scale ZVI injection

Graphic from Lawrinenko et al., 2023 (open access).

Biodegradation, ISCO and ISCR typically result in the detoxification of pollutants

Thermal treatment

- \triangleright Steam
- \triangleright Electrical resistance heating (ERH)
- \triangleright Optimal for unsaturated zone
- \triangleright Recover contaminants in gas/vapor

Air stripping

- Sparge air into the ground
- \triangleright Recover contaminants in gas phase

ERH system cleans up contaminated soil and groundwater.

Ground

Cover

Graphics from USEPA: Office of Land and Emergency Management (5203P) | EPA-542-F-21-016 | 2021 | [www.clu-in.org](about:blank) and [Federal Remediation Technologies Roundtable https://www.frtr.gov/matrix-2019/Air-Sparging/#Schematic.](about:blank)

How are PFAS Different?

- **Complex array of structures with differing behaviors**
- **Concern at exceedingly low concentrations (ng/L)**
- **Perhaps most recalcitrant class of organic compounds to date**
	- \triangleright In situ bioremediation X
	- \triangleright In situ chemical oxidation X
	- \triangleright In situ chemical reduction X

Most promising alternatives

- \triangleright Pump-and-treat with IX, GAC, RO
- \triangleright Pump-and-treat with foam fractionation
- \triangleright In situ adsorption
	- \triangleright Colloidal activated carbon
	- \triangleright Funnel and gate w/IX resin
- \triangleright Foam fractionation w/ex situ destruction
- \triangleright Thermal removal and capture

Pump and Treat with Adsorption

- Applicable for groundwater or drinking water
- Media must be changed out periodically
- > PFAS on media must be dealt with (landfill, thermal regeneration, regenerable IX resins, newer destructive approaches)
- \triangleright Long term energy costs diminishing returns for groundwater

Pump and Treat with Foam Fractionation

Many PFAS are surfactants and migrate to an air-water interface

- \triangleright PFAS will accumulate in the foam which can then be removed & treated
- \triangleright Not particularly effective with short-chain PFAS
- \triangleright Currently being tested/applied at commercial scale

Gas

Gas

Pump and Treat with Foam Fractionation

Data courtesy of Dr. Kent Sorenson, Allonia

In Situ Adsorption Colloidal Activated Carbon

Colliodal Activated Carbon (CAC) is being applied as an in situ adsorbent and sequestrant for **PFAS**

PTIM

Micrographs courtesy of Regenesis

In Situ Adsorption - Colloidal Activated Carbon

Barrier Case Study

AFFF source area plume at US Navy site

Project Tasks

- **≻ Site assessment**
- **Laboratory column test**
- **Barrier design**
- **Barrier installation**
- **Groundwater sampling (24 Months)**
- **Core collection (before/after)**

Site Assessment In Situ Adsorption - Colloidal Activated Carbon

In Situ Adsorption - Colloidal Activated Carbon

Site Assessment Results

In Situ Adsorption - Colloidal Activated Carbon Laboratory Column Testing

EVALUATE PFAS BREAKTHROUGH DURING 2 YRS SIMULATED GW TRANSPORT QUANTIFY ORGANIC CARBON DISTRIBUTION

Columns

- \triangleright Homogenized Site Sediment (SB-1)
- ≥ 30 cm x 3.5 cm diam
- $>$ ~ 100 mL pore volume
- \triangleright GW nearby well
- ≥ 1.6 mL/hr flow rate
- \triangleright Simulate ~ 5.2 M/yr flow (1.5 mos)

CAC Addition

- \geq 4% CAC in site groundwater
- ≥ 1.5 pore volumes added
- \triangleright Flush until effluent clear

Column Test Results

In Situ Adsorption - Colloidal Activated Carbon Demonstration Well and Injection Point Lineup

- Target concentration = 2,000 mg carbon per kg of soil
- 12 injection points (30' x 10' x 27')

In Situ Adsorption CAC Injection

Photos courtesy of Regenesis **19** and 19 and 19

In Situ Adsorption Barrier Performance

In Situ Adsorption Barrier Performance

PFBA Concentrations: Barrier Edge 1,400 1,200 1,000 PFBA (ng/L) PFBA (ng/L) **800 600** O **400 OH** F. F F F **200 0 -150 -50 50 150 250 350 450 550 650 750 850 Days PMW-02S -D-PMW-02D** ---Plumestop Injection

CAC Summary

CAC Injection represents a viable option to:

- \triangleright Cut-off dilute PFAS plumes and protect downgradient receptors
- \triangleright Reduce source area concentrations and downgrdient flux

NESDI Field Study Results :

- Overall good CAC distribution in aquifer
- Good effectiveness for ~2 years overall: > 98% PFAS Reduction
- \triangleright PFBA shows rapid breakthrough not unexpected from isotherms
- \triangleright No signs of hydraulic conductivity changes at 1 yr

In Situ Adsorption Funnel and Gate with Ion Exchange Resin

Overhead view of a funnel and gate system **Front view of a funnel and gate system**

Source: Kouretzis, G. 2018.

In Situ Foam Fractionation

- Application of foam fractionation in a trench barrier
- \triangleright Pilot scale testing ongoing

In Situ Thermal

- Application primarily to soils, but also applicable to shallow groundwater
- \triangleright Thermal drives off PFAS via volatilization
- \triangleright PFAS in vapor captured aboveground
- \triangleright Pilot scale

Photos and data courtesy of Mark Kluger, TRS

Questions?

More information paul.Hatzinger@aptim.com

https://serdp-estcp.mil/projects

References Cited

Hatzinger, P.B. 2005. Perchlorate biodegradation for water treatment. Environ. Sci. Technol. 39:239A-247A. [Perchlorate Biodegradation for Water Treatment \(acs.org\).](about:blank)

Kouretzis, G. 2018. Fundamentals of Geotechnical Engineering and their Applications. ISBN 978-0-9953750-1-7

LaFond, J., R. Rezes, M. Shojaei, T. Anderson, W. A. Jackson, J. Guelfo, and P.B. Hatzinger. 2024. Biotransformation of PFAA precursors by oxygenase expressing bacteria in AFFF-impacted groundwater and in pure compound studies with 6:2 FTS and ETFOSE. *Environ. Sci. Technol. 58:13820-13832.*

[https://pubs.acs.org/doi/abs/10.1021/acs.est.4c01931](about:blank)

Lawrinenko, M., S. Kurwadkar. And R.T. Wilkin. 2023. Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation – A mechanistic approach. Geoscience. Front. 101494. [https://doi.org/10.1016/j.gsf.2022.101494](about:blank)

ncite Liang, S.H., K.F. Chen, C.S. Wu, Y.H. Lin and C.M. Kao. 2014. Development of KmnO4-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater. Water. Res. 54:149-158 [https://doi.org/10.1016/j.watres.2014.01.068](about:blank)

