PFAS Remediation Strategies and Research

Paul B. Hatzinger, PhD Aptim Federal Services, Lawrenceville, NJ 9/27/2024

How Do We Treat Contaminants in Groundwater?

Powerpoint stock image

Ex Situ Pump-and-Treat

- > Bioreactors
- > GAC/IX sorptive systems
- Oxidation systems
- > Air-stripping

In Situ Bioremediation

- Add amendments to stimulate natural bacteria
- Add bioaugmentation cultures

In Situ Chemical Oxidation (ISCO)

- Persulfate
- Ozone
- Peroxide
- Permanganate

Graphic from Liang et al., 2014.

In Situ Chemical Reduction (ISCR)

- Permeable Reactive Barrier (PRB) Zero-valent iron (ZVI)
- Nano-scale ZVI injection

Graphic from Lawrinenko et al., 2023 (open access).

> Biodegradation, ISCO and ISCR typically result in the detoxification of pollutants

Anaerobic biodegradation of TCE

Chemical oxidation of TCE

Thermal treatment

- > Steam
- Electrical resistance heating (ERH)
- Optimal for unsaturated zone
- Recover contaminants in gas/vapor

Air stripping

- Sparge air into the ground
- Recover contaminants in gas phase

ERH system cleans up contaminated soil and groundwater.

Ground

Cover

Graphics from USEPA: Office of Land and Emergency Management (5203P) | EPA-542-F-21-016 | 2021 | <u>www.clu-in.org</u> and <u>Federal Remediation Technologies Roundtable https://www.frtr.gov/matrix-2019/Air-Sparging/#Schematic.</u>

How are PFAS Different?

- Complex array of structures with differing behaviors
- Concern at exceedingly low concentrations (ng/L)
- Perhaps most recalcitrant class of organic compounds to date
 - In situ bioremediation X
 - In situ chemical oxidation X
 - In situ chemical reduction X

Most promising alternatives

- Pump-and-treat with IX, GAC, RO
- Pump-and-treat with foam fractionation
- In situ adsorption
 - Colloidal activated carbon
 - Funnel and gate w/IX resin
- Foam fractionation w/ex situ destruction
- Thermal removal and capture

Pump and Treat with Adsorption

- > Applicable for groundwater or drinking water
- \blacktriangleright Media must be changed out periodically
- > PFAS on media must be dealt with (landfill, thermal regeneration, regenerable IX) resins, newer destructive approaches)
- \succ Long term energy costs diminishing returns for groundwater

Granular activated carbon

Pump and Treat with Foam Fractionation

> Many PFAS are surfactants and migrate to an air-water interface

PFAS will accumulate in the foam - which can then be removed & treated

- ➢ Not particularly effective with short-chain PFAS
- Currently being tested/applied at commercial scale

Gas

Gas

Pump and Treat with Foam Fractionation

In Situ Adsorption Colloidal Activated Carbon

Colliodal Activated Carbon (CAC) is being applied as an in situ adsorbent and sequestrant for **PFAS**

Micrographs courtesy of Regenesis

In Situ Adsorption - Colloidal Activated Carbon

Barrier Case Study

AFFF source area plume at US Navy site

Project Tasks

- Site assessment
- Laboratory column test
- Barrier design
- Barrier installation
- Groundwater sampling (24 Months)
- Core collection (before/after)

In Situ Adsorption - Colloidal Activated Carbon Site Assessment

In Situ Adsorption - Colloidal Activated Carbon

Site Assessment Results

In Situ Adsorption - Colloidal Activated Carbon Laboratory Column Testing

EVALUATE PFAS BREAKTHROUGH DURING 2 YRS SIMULATED GW TRANSPORT QUANTIFY ORGANIC CARBON DISTRIBUTION

<u>Columns</u>

- Homogenized Site Sediment (SB-1)
- > 30 cm x 3.5 cm diam
- ~ 100 mL pore volume
- GW nearby well
- > 1.6 mL/hr flow rate
- Simulate ~ 5.2 M/yr flow (1.5 mos)

CAC Addition

- ➤ 4% CAC in site groundwater
- 1.5 pore volumes added
- Flush until effluent clear

Column Test Results

In Situ Adsorption - Colloidal Activated Carbon Demonstration Well and Injection Point Lineup

- Target concentration = 2,000 mg carbon per kg of soil
- 12 injection points (30' x 10' x 27')

In Situ Adsorption CAC Injection

Photos courtesy of Regenesis

In Situ Adsorption Barrier Performance

PFOS Concentrations: Barrier Edge

In Situ Adsorption

Barrier Performance

CAC Summary

CAC Injection represents a viable option to:

- Cut-off dilute PFAS plumes and protect downgradient receptors
- Reduce source area concentrations and downgrdient flux

NESDI Field Study Results :

- Overall good CAC distribution in aquifer
- ➢ Good effectiveness for ~2 years overall: > 98% PFAS Reduction
- PFBA shows rapid breakthrough not unexpected from isotherms
- > No signs of hydraulic conductivity changes at 1 yr

In Situ Adsorption Funnel and Gate with Ion Exchange Resin

Overhead view of a funnel and gate system

Front view of a funnel and gate system

Source: Kouretzis, G. 2018.

In Situ Foam Fractionation

- > Application of foam fractionation in a trench barrier
- Pilot scale testing ongoing

In Situ Thermal

- > Application primarily to soils, but also applicable to shallow groundwater
- Thermal drives off PFAS via volatilization
- PFAS in vapor captured aboveground
- ➢ Pilot scale

Photos and data courtesy of Mark Kluger, TRS

Questions?

More information paul.Hatzinger@aptim.com

https://serdp-estcp.mil/projects

References Cited

Hatzinger, P.B. 2005. Perchlorate biodegradation for water treatment. Environ. Sci. Technol. 39:239A-247A. <u>Perchlorate Biodegradation for Water Treatment (acs.org)</u>.

Kouretzis, G. 2018. Fundamentals of Geotechnical Engineering and their Applications. ISBN 978-0-9953750-1-7

LaFond, J., R. Rezes, M. Shojaei, T. Anderson, W. A. Jackson, J. Guelfo, and P.B. Hatzinger. 2024. Biotransformation of PFAA precursors by oxygenase expressing bacteria in AFFF-impacted groundwater and in pure compound studies with 6:2 FTS and ETFOSE. *Environ. Sci. Technol.* 58:13820-13832. https://pubs.acs.org/doi/abs/10.1021/acs.est.4c01931

Lawrinenko, M., S. Kurwadkar. And R.T. Wilkin. 2023. Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation – A mechanistic approach. Geoscience. Front. 101494. <u>https://doi.org/10.1016/j.gsf.2022.101494</u>

Liang, S.H., K.F. Chen, C.S. Wu, Y.H. Lin and C.M. Kao. 2014. Development of KmnO4-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater. Water. Res. 54:149-158 <u>https://doi.org/10.1016/j.watres.2014.01.068</u>

