Basic Ecological Information on Harmful Algal Blooms in New Jersey.

51st ANJEC Environmental Congress 27th September 2024 Rowan College, Mt. Laurel, New Jersey

Fred S. Lubnow, Ph.D.

With offices in New Jersey, Pennsylvania, Maryland and Connecticut flubnow@princetonhydro.com 610-524-4220

The term "Algae"

- More of an ecological term than a taxonomic one since algae include both eukaryotes and prokaryotes (blue-green algae, also known as cyanobacteria).
- ✓ Most algae provide valuable ecosystem services.
- ✓ Base of the food web; primary productivity.
- ✓ Contribute toward oxygenating the water.
- ✓ Sequester carbon.
- \checkmark May be a source of biofuel and have some pharmacological values.
- \checkmark However, some algae can be problematic.

Eukaryotes

Prokaryotes

Anabaena (blue-green alga) Bloom

Euglena Bloom

Algal groups

Green algae Chrysophytes **Diatoms Dinoflagellates** Euglenoids Cyanobacteria Others

Phytoplankton

- ✓ Phytoplankton are essentially, "free floating" algae.
- ✓ There are approximately 5,000 known species of phytoplankton.
- ✓ Of those, about 300 species (6%) are known to form Harmful Algal Blooms (HABs).
- ✓ About 80 of those species are known to be toxin producers.

Harmful Algae Blooms (HABs)

Impacts of Marine HABs

- Algal Toxins Health impacts on human and animal health. Neurological impairment, gastrointestinal distress, respiratory irritation; even severe illness and death.
- Deaths tend to be associated with eating shellfish and/or fish contaminated with marine algal toxins.
- Fish kills but other animals (birds, sea turtles, mammals) have been attributed to these toxins.
- ✓ Shading out desirable seagrasses, depletion of dissolved oxygen (DO).
- \checkmark Aesthetic, recreational and economic impacts.

Red Tide (dinoflagellates)

✓ Dinophysis✓ Alexandrium✓ Karenia

Photo Credit: NJDEP

Dinophysis sp: an organism that can produce okadaic acid and dinophysistoxins which are linked to diarrhetic shellfish poisoning (DSP).

Karenia brevis: produces potent nelurotoxins that cause gastrointestinal and neurological problems in other organisms.

Photo Credit: Mote Marine Laboratory

Photo Credit: David Patterson & Bob Andersen

Alexandrium sp.: a saxitoxin producing organism that causes paralytic shellfish poisoning.

Brown Tide (diatoms)

- ✓ Amphora
- Pseudo-nitzschia
- ✓ Nitzschia
- Aureococcus (a pelagophyte) – very small cells, produces a "mucopolysaccharide" that clogs the gills of filter feeders (photo from www.ncma.bigelow.org)

Pseudontizschia sp: known to produce domoic acid which is the marine biotoxin related to amnesic shellfish poisoning (ASP).

Photo Credit: NJDEP

What Triggers a Red / Brown Tide?

- ✓ Increased temperature / light
- ✓ Reduced estuarine flushing rates
- \checkmark Mixing of the water
- \checkmark Elevated salinities
- ✓ Mild winters / dry springs
- Inorganic nutrients (for many red / brown tides but not all)
- \checkmark Iron and organic nutrients

Simplified life cycle of a dinoflagellate. Credit: Woods Hole Oceanographic Institute / NOAA

Chlorophyll Remote Sensing

NJDEP's Bureau of Marine Water Monitoring, in cooperation with the NJ Forest Fire Service, Rutgers University and US EPA Region 2, conducts aircraft remote sensing for estimating chlorophyll levels in NJ's coastal waters. Since chlorophyll is a plant pigment, high levels of chlorophyl in the water are typically associated with an algal bloom. To detect potential blooms, the plane flies 6 days a week during the summer months, in favorable weather conditions, over the coastal waters of New Jersey. These flights provide a valuable perspective on water conditions and trends that enable the Bureau to target boat sampling in locations where algal blooms may be occurring.

Marine HAB Monitoring (NJDEP)

- ✓ Googled: NJDEP and Rutgers university chlorophyll remote sensing.
- Routine Sampling of 48 marine phytoplankton stations.
 Sampled between 5 and 10 times per year.
- Analyzed for chlorophyll-a (all algae possess chlorophylla).
- ✓ Identify toxin-producing species / dominate species and conduct cell counts (cells / mLs).

Citizen Scientists / Volunteers

 Check out the Aircraft Remote Sensing website - <u>NJDEP</u> <u>New Jersey Department of Environmental Protection -</u> <u>Aircraft (rutgers.edu)</u>

- ✓ Visual observations (photos, color, turbidity, etc.)
- ✓ Measure chlorophyll-a with a meter
- ✓ Measure water clarity with a Secchi disk
- Report an environmental incident / situation to NJDEP (1-877-WARNDEP)

Impacts of Freshwater HABs

- Cyanotoxins Health impacts on human and animal health. Neurological impairment, gastrointestinal distress, respiratory irritation; even severe illness and death.
- \checkmark Direct impact on the quality of potable water supplies.
- \checkmark Deaths tend to be associated pets.
- \checkmark Direct health impacts on livestock and wildlife as well.
- ✓ Shading out desirable submerged aquatic vegetation, depletion of dissolved oxygen (DO).
- \checkmark Aesthetic, recreational and economic impacts.

Cyanobacteria

- Microcystis
- Dolichospermum (Anabaena)
- Aphanizomenon

Lake Hopatcong, Morris and Sussex Counties, NJ

- ✓ Largest lake in New Jersey (2,686 acres; 1,087 ha).
- ✓ Five municipalities in watershed (13,548 acres; 5,482.7 ha).
- ✓ More than 500,000 people visit the lake or live in the watershed.

Blooms at Lake Hopatcong, New Jersey (June 2019)

Fig. 2.1 Life cycle of the cyanobacterium *Aphanizomenon ovalisporum* (Nostocales). Adopted from Hense and Beckmann (2006)

PRINCETONHYDRO.COM

What Triggers a CyanoHAB?

- ✓ Increased temperatures
- ✓ Lower flushing rates
- Increased stabilization / thermal stratification
- Increased phosphorus availability (increase in algal biomass)
- ✓ Increased availability of inorganic nitrogen (will trigger the production of cyanotoxins such as microcystins)

Lake Hopatcong – Early 2023

 Further to the left was taken on 11th January 2023

 Photos on right was taken 19th February 2023 (just starting to get a thin layer of ice as of 26th February 2023)

Lake Hopatcong – 27th February 2024

SCIENCE ENGINEERING DESIGN

Fig. 1 Schematic for a generalized cyanobacterial life cycle; details vary among taxa.

J Plankton Res, Volume 43, Issue 1, January/February 2021, Pages 10–19, <u>https://doi.org/10.1093/plankt/fbaa059</u> The content of this slide may be subject to copyright: please see the slide notes for details.

Volunteer / Citizen Monitoring for Cyanobacteria

- Check out the Aircraft Remote Sensing website <u>NJDEP</u> <u>New Jersey Department of Environmental Protection -</u> <u>Algal Bloom Remote Sensing (rutgers.edu)</u>
- ✓ Visual observations (photos, color, turbidity, etc.)
- \checkmark Measure chlorophyll-a and **phycocyanin** with a meter
- ✓ Conducting cell counts (cells / mLs)
- \checkmark Measure water clarity with a Secchi disk
- ✓ Report an environmental incident / situation to NJDEP (1-877-WARNDEP)

Algal Bloom Remote Sensing

NJDEP's Water Monitoring, Standards and Pesticide Control (WMSPC), in cooperation with the NJ Forest Fire Service and Rutgers University conduct aircraft remote sensing using phycocyanin measurements for estimating the presence of cyanobacteria Harmful Algal Blooms (HABs in select NJ lakes. Phycocyanin measurements are used to estimate the cell density and the spatial extent of cyanobacteria. This informatio is used by WMSPC to strategically deploy staff to collect HAB samples for laboratory analysis. Laboratory analysis of cell density, species an cyanotoxins are used to confirm the presence of HABs and to determine if a recreational Alert level is triggered. To detect potential bloom and assess the status of previously confirmed HABs, the plane flies one day a week (generally on Tuesday) or as needed over lakes with known history of HABs. Other lakes may be considered and added, however the flight path and phycocyanin sensor resolution is limited to larger lakes. Other screening and status monitoring is performed on smaller lakes via on-site surveys. The overall goal is to inform respons actions for public health and safety of NJ residents. To learn more about cyanobacteria and the potential threat to health they may cause, visi DEP's <u>HAB Page</u>. Alert Postings and laboratory analysis results can be found on the <u>HAB Interactive Map</u>.

General Observations

- Changes in plant operations (decline in filter runs, increase product use, increase in pH)
- Color / turbidity of water
- ✓ Surface scums / mat algae
- \checkmark Tastes or odors
- ✓ Decline in water clarity

Cyanotoxins are <u>NOT</u> Taste and Odor Compounds

- Cyanotoxins are colorless, tasteless and odorless compounds
- Taste and odor (T&O) compounds such as Geosmin and MIB can be produced by cyanobacteria (blue-green algae) and some actinobacteria
- Cyanobacteria can produce T&O compounds and not produce cyanotoxins
- They can also produce cyanotoxins and no T&O compounds

Field Testing for Cyanotoxins

Main	Results	Settin	qs	2 7
Test	Name: MC	- Source		
Samp	le ID: um	2-2		
Contr Test I Ratio Negal nd	ol Line Inte Line Intensi : 2.66 tive	nsity: 309, ty: 822,011	443 5	
Warn	ing: Test po	erformed w	ith	
Re	e-test	ew Sample	ID View	w Image

Measuring phycocyanin as a surrogate to cyanobacteria cell counts

Phycocyanin – what is it?

- One of several phycobiliproteins that are accessory pigments that aid in photosynthesis, particularly in low light level environments.
- ✓ Gives the cyanobacteria their bluish-green color.
- All algae (and plants) use chlorophyll-a in photosynthesis, which is why measuring chlorophyll-a concentrations is a way of quantifying algae biomass.
- Thus, phycocyanin can be used to quantify cyanobacteria biomass.

Lake Hopatcong

Upper Mohawk Lake

Mercer Lake

Cyanobacteria and Phycocyanin: Mercer Lake, 2020 300,000 Cyanobacteria Cell Count (cells/mL) 250,000 y = 9206x - 122489 $R^2 = 0.6646$ 200,000 p = 0.001150,000 100,000 50,000 0 0 5 10 15 20 25 30 35 Phycocyanin (µg/L)

Curlis Lake

Cyanobacteria and Phycocyanin: Curlis Lake, 2020

Cyanobacteria and Phycocyanin: Spring Lake, 2020

Spring Lake

Entire 2020 PH Database

NJDEP HAB Alert Level				
Cell Count	Level			
0 - 20,000	None			
20,000 - 40,000	Watch			
40,000 - 80,000	Alert			
80,000 +	Advisory			

Phycocyanin and Cyanobacteria Regression Equations					
	Princeton Hydro	NJDEP			
Phycocyanin	Predicted Cyanobacteria	Predicted Cyanobacteria			
(ug/L)	(Cells/mL)	(Cells/mL)			
3	-	3,154			
4	-	5,034			
5	1,556	6,914			
6	3,786	8,794			
7	6,016	10,674			
8	8,246	12,554			
9	10,476	14,434			
10	12,706	16,314			
11	14,936	18,194			
12	17,166	20,074			
13	19,396	21,954			
14	21,626	23,834			
15	23,856	25,714			
16	26,086	27,594			
17	28.316	29.474			
18	30,546	31.354			
19	32,776	33.234			
20	35,006	35 114			
20	37 236	36 994			
22	39 466	38 874			
22	41 696	40 754			
23	43 926	42 634			
25	46.156	44 514			
26	48,386	46 394			
20	50.616	48.274			
27	52,846	50 154			
20	55,076	52 034			
30	57,306	53,034			
21	59,536	55 794			
22	61 766	57,674			
22	62,006	50,554			
33	66 326	61 424			
25	68 456	62 214			
35	70.6%6	65 104			
27	70,080	67.074			
37	72,910	67,074			
38	75,140	68,954			
39	77,376	70,834			
40	79,606	72,714			
41	81,836	74,594			
42	84,066	76,474			
43	86,296	/8,354			
44	88,526	80,234			
45	90,756	82,114			
46	92,986	83,994			
47	95,216	85,874			
48	97,446	87,754			
49	99,676	89,634			
50	101,906	91,514			

*Note: NJDEP equation is from

the 2021 NJDEP HABs Summit

presentation.

Princeton Hydro Equation: y = 2230 - 9594	1, R ² = 0.49; NJDEP Equation: y = 1880x - 2468
---	--

Algal Bloom Remote Sensing

NJDEP's Water Monitoring, Standards and Pesticide Control (WMSPC), in cooperation with the NJ Forest Fire Service and Rutgers University conduct aircraft remote sensing using phycocyanin measurements for estimating the presence of cyanobacteria Harmful Algal Blooms (HABs in select NJ lakes. Phycocyanin measurements are used to estimate the cell density and the spatial extent of cyanobacteria. This informatio is used by WMSPC to strategically deploy staff to collect HAB samples for laboratory analysis. Laboratory analysis of cell density, species an cyanotoxins are used to confirm the presence of HABs and to determine if a recreational <u>Alert level</u> is triggered. To detect potential bloom and assess the status of previously confirmed HABs, the plane flies one day a week (generally on Tuesday) or as needed over lakes with known history of HABs. Other lakes may be considered and added, however the flight path and phycocyanin sensor resolution is limited t larger lakes. Other screening and status monitoring is performed on smaller lakes via on-site surveys. The overall goal is to inform respons actions for public health and safety of NJ residents. To learn more about cyanobacteria and the potential threat to health they may cause, vis DEP's <u>HAB Page</u>. Alert Postings and laboratory analysis results can be found on the <u>HAB Interactive Map</u>.

Limitations Associated with Using Phycocyanin

- A few other algae produce phycocyanin such as red algae and cryptomonads.
- In addition, there are some benthic forms of filamentous cyanobacteria (i.e., Oscillatoria, Spirulina, Anabaena) that do not produce large amounts of phycocyanin but instead produce phycoerythrin.
- ✓ Need to develop a lake-specific database of <u>cell counts</u> (not colonies; not filaments; not units) and phycocyanin.

Cryptomonads

Cryptomonas (to the left)Rhodomonas (to the right)

Curlis Lake

- August 2021 had phycocyanin value of > 100 ug/L
- While the lake had very low cyanobacteria cell counts, the cryptomonad cell counts were extremely high.

QUESTIONS?

Princeton Hydro, LLC

Princeton Hydro, LLC flubnow@princetonhydro.com 610-524-4220 THANK YOU!